A Redetermination of the Crystal Structure of Galenobismutite, $\mathbf{P b B i}_{2} \mathbf{S}_{\mathbf{4}}{ }^{\boldsymbol{*}}$

By Y. Ittaka \dagger and W. Nowacki
Abteilung für Kristallographie und Strukturlehre, Mineralogisches Institut, Universität, Bern, Schweiz

(Received 19 June 1961)

Abstract

The crystal structure of galenobismutite $\left(\mathrm{PbBi}_{2} \mathrm{~S}_{4}\right)$ has been redetermined in order to establish the structural relationship between this sulfosalt and berthierite ($\mathrm{FeSb}_{2} \mathrm{~S}_{4}$).

The lattice constants and the space group are:

$$
a=11 \cdot 79 \pm 0.007, b=14.59 \pm 0.008, c=4 \cdot 10 \pm 0.005 \AA, D_{2 h}^{16}-\text { Pnam } .
$$

Abstract

The structure was refined by Fourier and three-dimensional least-squares methods based on newly determined intensity data. Bismuth and lead atoms could be distinguished by comparing their coordination. The structure contains two BiS_{2}-chains which are bound together to form composite chains $\mathrm{Bi}_{4} \mathrm{~S}_{8}$. The present interpretation of the structure, in contrast of the previous work, shows that it is more similar to that of berthierite, but is not isostructural with it.

Introduction

The crystal structure of galenobismutite, $\mathrm{PbBi}_{2} \mathrm{~S}_{4}$, was proposed by Wickman (1951), who based his conclusions on X-ray data obtained with $\mathrm{Fe} K \alpha$ radiation and only the heavy lead and bismuth atoms could be located directly. The sulfur atoms were placed by space considerations assuming a similar arrangement to that found in stibnite $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and bismuthinite $\mathrm{Bi}_{2} \mathrm{~S}_{3}$. Recent structure determinations of berthierite, $\mathrm{FeSb}_{2} \mathrm{~S}_{4}$ (Buerger \& Hahn, 1955) and scleroclase, $\mathrm{PbAs}_{2} \mathrm{~S}_{4}$ (Nowacki, Iitaka et al., 1961) indicated that the arrangement of antimony (or arsenic) and sulfur atoms in these crystals is not quite the same as in stibnite or bismuthinite. Moreover, the similar cell constants and the identical space group suggest a very clcse structural relationship between galenobismutite and berthierite. We have initiated the refinement of the crystal structure of galenobismutite in order to establish the structural relationships among these sulfosalt minerals.

Experimental

The specimens of galenobismutite were kindly presented by Prof. F.E. Wickman. The material was from Nordmark Mines, Värmland, Sweden, from the collection at the Naturhistoriska Riksmuseet, Stockholm, with catalog No. g 4030. They form indistinctly columnar aggregates elongated along the the c-axis and showing poor longitudinal cleavage.

Very thin acicular crystals about 0.02 mm . thick were chosen for the c-axis X-ray specimens. A small spherical crystal of diameter 0.11 mm . was ground from the fragment by Bond's method (Bond, 1951) and was used for the a-axis specimen.

[^0]Table 1. Cell constants of galenobismutite

	Berry (1940)	Wickman (1951)	Present determination
	(\AA)	(\AA)	(\AA)
a	11.72 ± 0.03	11.65 ± 0.05	$11 \cdot 79 \pm 0.007$
b	14.52 ± 0.03	14.49 ± 0.03	14.59 ± 0.008
c	4.07 ± 0.02	4.08 ± 0.03	4.10 ± 0.005

The lattice constants were calculated by the leastsquares method using 16 hk 0 and 140 kl reflections recorded on zero-layer Weissenberg photographs. These values are listed in Table 1 together with the published data of Berry (1940) and Wickman (1951).

The systematic absences confirmed the space group to be $D_{2 h}^{16}-P n a m$ (or $C_{2 v}^{9}-P n a 2$) as reported by Berry (1940) and Wickman (1951). The unit cell contains four formula units of $\mathrm{PbBi}_{2} \mathrm{~S}_{4}$. The intensity data were obtained from equi-inclination integrated Weissenberg photographs taken with $\mathrm{Cu} K \alpha$-radiation.

These were: c-axis, using the acicular crystal (0.02 mm. thick), zero-layer with Ni-filter, 1st, 2nd, 3rd layers no filter; a-axis, using the spherical crystal ($0 \cdot 11 \mathrm{~mm}$. diameter), zero-layer no filter. The mul-tiple-film technique was used and the intensities were recorded with a photometer (Joyce-Loebl double beam automatic recording Microdensitometer, Mark III). Errors caused by the variation of the spot-size in upper-layer Weissenberg photographs, and by the variation of the absorption effect due to the irregular shape of the crystal specimen, were minimized by using the mean intensity values for the two sets of equivalent reflections on either side of the Weissenberg photograph.

The intensities were corrected for Lorentz and polarization factors and for absorption. The acicular c-axis specimen was regarded as a cylinder with a μR-value of $1 \cdot 80$, and the a-axis specimen as a sphere with a μR of $8 \cdot 8$. The linear absorption coefficient

Fig. 1. (a) Galenobismutite: Fourier projection along the c-axis. Contours at intervals of 20 e. \AA^{-2} for lead and bismuth atoms, and 5 e. \AA^{-2} for sulfur atoms. Broken lines indicate 0 e. \AA^{-2} and dotted lines negative contours of $5 \mathrm{e} . \AA^{-2}$ interval. (b) Galenobismutite: Difference Fourier projection along the c-axis. Lead and bismuth atoms are subtracted. Contours at intervals of 5 e. \AA^{-2}. Broken lines indicate 0 e. \AA^{-2} and dotted lines negative contours.
(μ) for $\mathrm{Cu} K \alpha$-radiation was calculated to be 1580 $\mathrm{cm} .^{-1}$, and the absorption factors were taken from the International Tables of X-ray Crystallography, Vol. II (1959).

The relative $\left|F_{o}\right|^{2}$-values were then placed on an absolute scale by Wilson's method and at the same time an average temperature factor of $1.38 \AA^{2}$ was obtained.

Refinement of the structure

Preliminary $h k 0$ structure-factor calculations based on Wickman's model gave an R-factor of 36% using our
observed structure factors. This factor became 40% omitting the contribution from the sulfur atoms. A trial projection calculated from one third of the total $F(h k 0)$'s indicated no anomalous features and the

Table 2. The refinement process

	R_{1}	R_{2}	$w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}$
	$11 \cdot 5 \%$	$17 \cdot 2 \%$	512575
Start	$10 \cdot 5$	$13 \cdot 4$	403374
After 1st cycle	10.5		
After 2nd cycle	$9 \cdot 8$	$11 \cdot 1$	338572
After 3rd cycle	$9 \cdot 4$	$9 \cdot 7$	299599
$R_{1}=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\|\|\Sigma\| F_{o} \mid$,	$R_{2}=\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2} / \Sigma w F_{c}{ }^{4}$		

Table 3. Atomic parameters of galenobismutite

	Wickman (1951)			Present determination			
	x	y	z	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Pb}{ }^{*}$	$0 \cdot 250$	$0 \cdot 645$	$0 \cdot 250$	$\begin{array}{r} 0.24792 \\ \pm 0.00015 \end{array}$	$\begin{array}{r} 0.65126 \\ \pm 0.00011 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1.56 \\ \pm 0.03 \end{array}$
$B i_{I} \dagger$	$0 \cdot 072$	$0 \cdot 400$	$0 \cdot 250$	$\begin{array}{r} 0.06750 \\ \pm 0.00014 \end{array}$	$\begin{array}{r} 0.39009 \\ \pm 0.00010 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1.23 \\ \pm 0.03 \end{array}$
BiIII	$0 \cdot 110$	$0 \cdot 900$	$0 \cdot 250$	$\begin{array}{r} 0.10427 \\ \pm 0.00014 \end{array}$	$\begin{array}{r} 0.90559 \\ \pm 0.00011 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1 \cdot 42 \\ \pm 0 \cdot 03 \end{array}$
S_{I}	$0 \cdot 333$	$0 \cdot 035$	$0 \cdot 250$	$\begin{array}{r} 0.33072 \\ \pm 0.00092 \end{array}$	$\begin{array}{r} 0.01411 \\ \pm 0.00069 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1.10 \\ \pm 0.08 \end{array}$
$S_{\text {II }}$	$0 \cdot 285$	$0 \cdot 285$	$0 \cdot 250$	$\begin{array}{r} 0.26091 \\ \pm 0.00088 \end{array}$	$\begin{array}{r} 0.29968 \\ \pm 0.00074 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 0.89 \\ \pm 0.07 \end{array}$
$\mathrm{S}_{\text {III }}$	0.077	$0 \cdot 090$	0.250	$\begin{array}{r} 0.05499 \\ \pm 0.00093 \end{array}$	$\begin{array}{r} 0.09269 \\ \pm 0.00071 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1.04 \\ \pm 0.09 \end{array}$
SIV	$0 \cdot 013$	0.735	$0 \cdot 250$	$\begin{array}{r} 0.01808 \\ \pm 0.00097 \end{array}$	$\begin{array}{r} 0.71199 \\ \pm 0.00070 \end{array}$	$0 \cdot 25000$	$\begin{array}{r} 1.06 \\ \pm 0.08 \end{array}$

[^1]Table 4. Observed and calculated structure factors
Negative signs of F_{c} are designated by 0 printed between F_{o} and F_{c}

Table 4 (cont.)

Tabelle 4 (cont.)

refinement was further continued. In this structure, all atoms must occur on the mirror planes with z parameters $\frac{1}{4}$ or $\frac{3}{4}$, and the structure was mainly refined by successive Fourier syntheses and difference projections along the c-axis. Later, three-dimensional least-squares refinement was carried out. The atomic scattering factors were computed by the three term Gaussian expansion. The coefficients of the formula were taken from the paper by Forsyth \& Wells (1959). For lead and bismuth they evaluated the coefficients from the tabulated values of atomic scattering factors by James \& Brindley (1931) and for sulfur, the values of Viervoll \& Øgrim (1949) were used.
The new sets of coordinates for lead and bismuth were obtained by the trial (001) projection and a subsequent structure-factor calculation yielded the R-factor 30%. A difference projection was now computed omitting the contribution of all sulfur atoms to the F_{c} 's. This synthesis not only indicated the coordinate shifts of the heavy atoms, but also had peaks corresponding to four sulfur atoms. The R-factor now fell down to 17% including the sulfur atoms.

After two cycles of refinement by difference projections, a (100) projection was computed confirming the z-parameters of the atoms. Three-dimensional struc-ture-factor calculations were then carried out. The R-factors were: $R(h k 0)=11 \cdot 9 \%$ (corrected for extinction), $R(h k 1)=13 \cdot 3 \%, R(h k 2)=11 \cdot 8 \%, R(h k 3)=$ $10 \cdot 1 \%, R(0 k l)=17 \%$. The relatively large value of the $R(0 \mathrm{kl})$ could be attributed to irregularity of the absorption effect.

A comparison of F_{o} and F_{c} indicated a systematic depression of F_{0} values for some strongest reflections. $12(h k 0), 6(h k 1), 6(h k 2)$, and $4(h k 3)$ planes were then corrected for extinction assuming the relation

$$
I_{c}=I_{o} /\left(1-g . I_{o}\right),
$$

where g was found by plotting

$$
L p\left|F_{c}\right|^{2} / I_{o}\left(=I_{c} / I_{o}\right) \text { against } L p\left|F_{c}\right|^{2}\left(=I_{c}\right) .
$$

Fig. $1(a)$ and (b) show the final electron-density and difference projections, the latter utilizing the F_{c}-values for which the contributions of sulfur atoms are excluded. It indicates four peaks of the sulfur
atoms and anisotropy of the heavy atoms. No allowance, however, has been made for the anisotropic thermal motions.

The $775(h k l)$ data were then submitted to three cycles of least-squares refinement. The programme was written for the Bull-Gamma-A.E.T. electronic computer to minimize the function

$$
\Sigma w(h k l)\left(F_{o}^{2}(h k l)-F_{c}^{2}(h k l)\right)^{2}
$$

using diagonal approximations. It includes the refinement of an individual isotropic temperature factor for each atom. The weighting system was

$$
\begin{array}{llll}
w(h k l)=\mathrm{l} / F_{o}^{4}(h k l) & \text { if } & \left|F_{o}(h k l)\right| \geq 4 F_{o \text { min }} \\
w(h k l)=1 / 256 F_{o \text { min. }}^{4} . & \text { if } & \left|F_{o}(h k l)\right|<4 F_{o \text { min }} .
\end{array}
$$

where, $F_{o \text { min }}$. is a minimum observable F_{o}-value and was taken as $15 \cdot 00$. The process of the refinement is outlined in Table 2. The maximum coordinate shift during the refinement was only $0.02 \AA$.

The final parameters are listed in Table 3, together with the standard deviations calculated from the diagonal element of the normal equations for the last least-squares cycle. The atomic coordinates reported by Wickman (1951) are also listed in the table. The observed and the final calculated structure amplitudes are shown in Table 4.

Discussion of the structure

The structure of galenobismutite projected along the c-axis is shown in Fig. 2. Some of the interatomic distances calculated from the coordinates given in Table 3 are listed in Table 5. The average standard deviation of the $\mathrm{Pb}-\mathrm{S}$ and $\mathrm{Bi}-\mathrm{S}$ distances is $\pm 0.015 \AA$ and that of the $S-S$ distances is $\pm 0.022 \AA$.

As shown in Table 3, the present analysis yielded new atomic parameters which depart significantly from those of Wickman (1951). The average parameter changes for the heavy atoms were $0.05 \AA$ in the a and $0 \cdot 11 \AA$ in the b-direction and for the sulfur atoms they were $0.16 \AA$ and $0.22 \AA$ respectively. Some of the sulfur atoms were moved as much as $0 \cdot 34 \AA$.

Fig. 2. Projection of the structure of galenobismutite along the c-axis. The largest circles indicate the sulfur atoms, the medium bold circles the lead, and the smallest circles the bismuth atoms. Double circles indicate atoms at $z=\frac{3}{4}$ and single circles at $z=1$.

Consequently, the interatomic distances between the heavy atoms and the sulfur atoms were changed by about $0 \cdot 2 \AA$. The present interpretation of the structure, in contrast to that of Wickman, shows that it is more similar to that of bertherite, $\mathrm{FeSb}_{2} \mathrm{~S}_{4}$, but it is not isostructural with the latter as was previously thought.

By X-ray methods it is very difficult to distinguish bismuth from lead. However, if we compare the environments of the three heavy atoms, it is found that two of them have the nearest approach of sulfur atoms at about $2.7 \AA$, while the third heavy atom has no short distance less than $2.85 \AA$. We may conclude that the former two are bismuth which form Bi-S bonds having much covalent character. The third heavy atom, which Wickman thought to be bismuth, is surrounded by seven sulfur atoms with

Table 5. Interatomic distances in galenobismutite (A)

				$\mathrm{S}_{\text {IV }}$	Pb	Bi_{1}	Bi_{11}
Pb	3.01(2)	2.98(2)	3.21(2)	$\begin{aligned} & 2 \cdot 85(1) \\ & 3 \cdot 76(1) \end{aligned}$	6.56	4.59	$\begin{aligned} & 4 \cdot 08 \\ & 4 \cdot 48 \end{aligned}$
Bix	$\begin{aligned} & 2 \cdot 99(2) \\ & 3 \cdot 12(1) \end{aligned}$	3•63(1)		2.73(2)		$4 \cdot 13$	$4 \cdot 38$
$\mathrm{Bi}_{\text {II }}$	3.10(1)	3.02(2)	$\begin{aligned} & 2 \cdot 78(2) \\ & 2 \cdot 79(1) \end{aligned}$	3.00(1)			$4 \cdot 22$
S_{I}	4.51(2)	$\begin{aligned} & 3 \cdot 89(2) \\ & 4 \cdot 25(\mathrm{I}) \end{aligned}$	3.45(1)	3.96(2)			
$\mathrm{S}_{\text {II }}$			$\begin{aligned} & 3 \cdot 88(1) \\ & 3 \cdot 81(1) \end{aligned}$	$\begin{aligned} & 3 \cdot 55(2) \\ & 3 \cdot 88(2) \end{aligned}$			
$\mathrm{S}_{\text {III }}$			3.63(2)	3.61(2)			

distances ranging from $2.85 \AA$ to $3.21 \AA$. These distances are in agreement with the $\mathrm{Pb}-\mathrm{S}$ distances found in galena $(2.97 \AA$) and in other sulfosalts, and we take this atom as lead.

A comparison of the coordination of sulfur around lead and bismuth as found in various sulfosalt minerals is given in Fig. 3. Although only a few bismuth compounds can be found for which the complete structure analysis has been made, it is evident that at least in these crystals given in Fig. 3 bismuth and sulfur atoms are bound together to form a trigonal pyramid, and the bond lengths are considerably shorter than what would be expected for ionic $\mathrm{Bi}^{+3-S_{-2}}$ bonds $(1 \cdot 20+1 \cdot 82=3 \cdot 02 \AA)$.

Ja

Ga

Fig. 3. Coordination of lead and bismuth in different sulfosalts. Large circles indicate sulfur atoms (double circles show overlapping of two sulfur atoms of different height); small circles indicate lead atoms and small shaded circles bismuth atoms.
Se: Seligmannite $\mathrm{CuPbAsS}_{3}$ (Leineweber, 1956).
Bo: Bournonite $\mathrm{CuPbSbS}_{3}$ (Leineweber, 1956).
Co: Cosalite $\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{5}$ (Weitz \& Hellner, 1960).
Ja: Jamesonite $\mathrm{FePb}_{4} \mathrm{Sb}_{6} \mathrm{~S}_{14}$ (Niizeki \& Buerger, 1957).
Sc : Scleroclase $\mathrm{PbAs}_{2} \mathrm{~S}_{4}$ (Nowacki \& Iitaka et al., 1961).
Ga: Galenobismutite $\mathrm{PbBi}_{2} \mathrm{~S}_{4}$ (Iitaka \& Nowacki, 1961)
The structure of galenobismutite contains two
crystallographically independent bismuth atoms (Bi_{1} and $\mathrm{Bi}_{\text {II }}$), each constituting trigonal pyramidal BiS_{3} groups which extend along the c-axis, sharing their edges to form the BiS_{2}-chains. The two $\mathrm{Bi}_{11} \mathrm{~S}_{2}$-chains are, as shown in Fig. 2, joined together, forming a double chain.

This feature seems to be similar to verthierite $\mathrm{FeSb}_{2} \mathrm{~S}_{4}$ and scleroclase $\mathrm{PbAs}_{2} \mathrm{~S}_{4}$. All of these sulfosalts contain both single and double chains of antimony (arsenic, bismuth) atoms. The single chain ($\mathrm{Bi}_{1} \mathrm{~S}_{2}$) in galenobismutite resembles the $\mathrm{Sb}_{1 I} \mathrm{~S}_{2}$ and the $\mathrm{As}_{I} \mathrm{~S}_{2}$ chains in berthierite and scleroclase. In the latter structures however, two SbS_{2} chains (and also two AsS_{2} chains) join together sharing one of the sulfur atoms to form a double chain of composition $\mathrm{Sb}_{2} \mathrm{~S}_{4}$ (and $\mathrm{As}_{2} \mathrm{~S}_{4}$). In galenobismutite, on the other hand, two $\mathrm{Bi}_{\mathrm{I}_{1} \mathrm{~S}_{2} \text { chains join together sharing two sulfur }}$ atoms so that the double chain has composition $\mathrm{Bi}_{\mathrm{I}_{I} \mathrm{~S}} \mathrm{~S}$. Moreover, if we take into account the second smallest interatomic distances between the bismuth and sulfur atoms, it is found that these chains are not so distinct as in berthierite or scleroclase and the situation is thus quite different.

The Bi_{I}-atoms, as illustrated in Fig. 2, are surrounded by six sulfur atoms in distorted octahedral arrangement, while the $\mathrm{Bi}_{\mathrm{II}}$-atoms are surrounded by seven sulfur atoms. Assuming that an ionic bond still exists between those bismuth and sulfur atoms which are separated by from $2 \cdot 99$ to $3 \cdot 12 \AA$ from each other (the calculated ionic bond distance is $3.02 \AA$), we can draw a sheet of bismuth and sulfur atoms extending parallel to the (010) plane. This sheet is made up of both kinds of chains and the Sr_{r}-atoms and has the composition BiS_{2}. It is linked to its neighbours through the lead atoms and by bonds between $\mathrm{Bi}_{\text {II }}$ and $\mathrm{S}_{\text {Iv }}$. The atomic configuration of the sheet resembles to some extent to those of the $\mathrm{Sb}_{4} \mathrm{~S}_{6}$-chain in stibnite $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ (Hoffmann, 1933) and of the $\mathrm{Bi}_{4} \mathrm{~S}_{6}$ chain in bismuthinite $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ (Hoffmann, 1933), but it is rather difficult to find such a sheet in berthierite and scleroclase. In Fig. 4 the bonding between bismuth and sulfur atoms within the sheet is schematically represented.
As described earlier, the lead atoms are surrounded by seven sulfur atoms with the distances $2.85 \AA$ to $3 \cdot 21 \AA$. There is one additional rather close approach of $3.76 \AA$. The arrangement of the sulfur atoms around the lead atom is, as shown in Fig. 2 and 3, very similar to that found in many sulfosalts. The $\mathrm{PbS}_{7}-$ polyhedra in galenobismutite extend parallel to the c-axis sharing three sulfur atoms with their translation equivalents and form a chain which fills up the interstices between the BiS_{2} sheets.

We are indebted to Prof. F. E. Wickman (Stockholm) for supplying us with crystals of galenobismutite. We wish to thank Prof. W. Nef and Dr R. Hüsser of the Institute of Applied Mathematics of the University of Bern for the use of the Bull electronic

Fig. 4. Schematic representation of $\mathrm{Bi}-\mathrm{S}$ bonds within a single sheet parallel to (010). Each sheet is linked to its neighbours through the Pb atoms and by bonds between $\mathrm{Bi}_{\mathrm{II}}$ and S_{IV} (not shown).
computer. The present investigation has been supported by a grant from the Swiss National Science Foundation.

References

Berry, L. G. (1940). Amer. Min. 25, 726.
Bond, W. L. (1951). Rev. Sci. Instrum. 22, 344.
Buerger, M. J. \& Hahn, T. (1955). Amer. Min. 40, 226. Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412. Hoffmann, W. (1933). Z. Kristallogr. 86, 225.

James, R. W. \& Brindley, G. W. (1931). Phil. Mag. (7), 12, 81 .

Leineweber, G. (1956). Z. Kristallogr. 108, 161.
Nilzeri, N. \& Buerger, M. J. (1957). Z. Kristallogr. 109, 161.
Nowacki, W., Iitaka, Y., Bürki, H. \& Kunz, V. (1961). Schweiz. miner. petrogr. Mitt. 41, 103.
Viervoll, H. \& ØGrim, O. (1949). Acta Cryst. 2, 211.
Weitz, G. \& Hellner, E. (1960). Z. Kristallogr. 113, 385.

Wickman, F. E. (1951). Ark. Min. 1, No. 9, 219.

Die Kristallstruktur von Teineit. Ein Beispiel für die Korrektur einer chemischen Formel auf Grund der Strukturbestimmung

Von Anna Zemann und J. Zemann
Mineralogisch-Kristallographisches Institut der Universität, Göttingen, Lotzestr. 16-18, Deutschland

(Eingegangen am 10. August 1961)

Abstract

The only existing chemical analysis of the rare secondary copper mineral teineite led to the composition $10 \mathrm{CuT}_{\mathrm{e}} \mathrm{O}_{4} .3 \mathrm{CuSO}_{4} .26 \mathrm{H}_{2} \mathrm{O}$. Determination of the crystal structure and comparison with $\mathrm{CuSeO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ showed, that the chemical composition should be $\mathrm{CuTeO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$, at least to a very good approximation. The atomic parameters have been refined in two projections. The shape of the TeO_{3} group is within the limits of accuracy a trigonal pyramid with an angle $\mathrm{O}-\mathrm{Te}-\mathrm{O} \sim 100^{\circ}$ and distances $\mathrm{Te}-\mathrm{O}=\mathrm{I} \cdot 88 \pm 0.05 \AA$. Copper has a $(4+1)$ coordination.

Vor kurzem konnten wir (Zemann \& Zemann, 1960) zeigen, dass das seltene Mineral Teineit, welchem bisher die Formel $10 \mathrm{CuTeO}_{4} .3 \mathrm{CuSO}_{4} .26 \mathrm{H}_{2} \mathrm{O}$ (Yosi-
mura, 1939) oder vielleicht auch $\mathrm{Cu}(\mathrm{Te}, \mathrm{S}) \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (Dana's System of Mineralogy, Vol. 2, 1951) zugeschrieben wurde, nach Gitterkonstanten und Raum-

[^0]: * Structural investigations on sulfosalts. Part 5.-Contribution No. 123.-Part $4=$ (Acta Cryst. 1961, 14 1291).
 \dagger Present address: Faculty of Pharmaceutical Scienses, University of Tokyo, Hongo, Tokyo, Japan.

[^1]: * Reported as Bi_{I} by Wickman (1951).
 \dagger Reported as Pb by Wickman (1951).

